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The longitudinal and transverse components of the complex dielectric susceptibility tensor of an assembly of
dipolar particles subjected to a dc bias field are evaluated in the context of a fractional noninertial rotational
diffusion model. Exact and approximate solutions for the dielectric dispersion and absorption spectra are
obtained. It is shown that a knowledge of the effective relaxation times fornormal rotational diffusion is
sufficient to predict accurately theanomalousdielectric relaxation behavior of the system for all time scales of
interest. Simple equations for the characteristic frequencies of the dielectric loss spectra are obtained in terms
of the physical model parameters(dimensionless field and fractional exponent). The model explains the anoma-
lous (Cole-Cole like) relaxation of complex dipolar systems, where the anomalous exponent differs from unity
(corresponding to the normal dielectric relaxation), i.e., the relaxation process is characterized by a broad
distribution of relaxation times.
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I. INTRODUCTION

The Brownian motion in a field of force is of fundamental
importance in problems involving relaxation and resonance
phenomena in stochastic systems[1,2]. An example is the
theory of dielectric relaxation of noninteracting polar mol-
ecules due to Debye[3]. That theory is based on the Smolu-
chowski equation for the noninertial rotational diffusion of
the molecules in an external electric field. The Debye theory
has a variety of applications in the interpretation of dielectric
relaxation measurements of molecular liquids and solutions.
However, it cannot explain the experimental data on dielec-
tric relaxation of complex systems such as amorphous poly-
mers, glass-forming liquids, etc. Here the relaxation behavior
may deviate considerably from the exponential(Debye) pat-
tern and is characterized by a broad distribution of relaxation
times[4]. The relaxation process in such disordered systems
is characterized by the temporally nonlocal behavior arising
from the energetic disorder which produces obstacles or traps
which delay the motion of the particle and introduce memory
effects into the motion[5]. The memory effects can be de-
scribed by a fractional diffusion equation in the derivation of
which is incorporated a waiting time probability density
function[4]. That function governs the random time intervals
between single microscopic jumps(or reorientations in the
case of rotational motion) of the particles. The underlying
microscopic model is a continuous time random walk
(CTRW) [6]. The situation is thus unlike that in a conven-
tional random walk which is characterized by a microscopic
time scale which is small compared to the observation time.
The microscopic time in the context of the conventional ran-
dom walk is the time the random walker takes to make a
single microscopic jump. In the CTRW, on the other hand, no
such microscopic time scale exists because of the power-law
dependence of the waiting time probability distribution func-
tion leading to the divergence of the characteristic time scale
[4]. A common feature of all such systems is that they exhibit
anomalous relaxation behavior. Recently, the CTRW has

been generalized to include the effect of time-dependent
jump probabilities and a fractional kinetic equation for trans-
lational and rotational diffusion has been derived when the
average waiting time diverges[4,7].

An important task in dielectric relaxation of complex sys-
tems is to extend the Debye theory of relaxation of polar
molecules to fractional dynamics, so that empirical decay
functions, e.g., the stretched exponential of Williams and
Watts[8], may be justified. Such a generalization of the De-
bye theory was given in Refs.[5,7,9]. There, the Debye
theory of dielectric relaxation of an assembly of polar mol-
ecules is reformulated using a fractional noninertial Fokker-
Planck equation for the purpose of extending that theory to
explain anomalous dielectric relaxation. It was shown that
this model can reproduce nonexponential Cole-Cole-type
anomalous dielectric relaxation behavior and that it reduces
to the classical Debye model of rotational diffusion when the
anomalous exponent is unity.

The application of a strong direct current(dc) electric
field E0 to a polar liquid comprised of dipolar molecules
results in a transition from free thermal rotation of the mol-
ecules to partial orientation with hindered rotation. This
change in the character of the molecular motion under the
influence of the field has a marked effect on the dielectric
properties of the fluid insofar as dispersion and absorption of
electromagnetic waves will be observed at the characteristic
frequencies of rotation of the molecule in the fieldE0. A
similar effect arises in magnetic relaxation of ferrofluids sub-
jected to a strong dc magnetic fieldH0. The similarity of the
problems of dielectric relaxation of a polar fluid and mag-
netic relaxation of a ferrofluid is not surprising because, from
a physical point of view, the rotational Brownian motion of
magnetic particles(magnetic dipoles) in a constant magnetic
field H0 is similar to that of polar molecules(electric dipoles)
in a constant electric fieldE0. Orientational relaxation of
Brownian particles in the context of the normal rotational
diffusion in the presence of a dc field has been treated in
details in Refs.[2,9–16].
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In the present paper, it is demonstrated how the linear
response of an assembly of noninteracting polar Brownian
particles to a small external fieldE1 applied parallel and
perpendicular to the bias fieldE0 may be calculated in the
context of the fractional noninertial rotational diffusion[2] in
the same manner as normal rotational diffusion[12]. In order
to carry out the calculation, it is assumed that the rotational
Brownian motion of a particle may be described by the frac-
tional noninertial Fokker-Planck(Smoluchowski) equation,
in which the inertial effects are neglected[7]. Both exact and
approximate solutions of this equation are presented. We
shall demonstrate that the characteristic times of the normal
diffusion process, namely, the integral and effective relax-
ation times, obtained in Refs.[2,12,17], allow one to evalu-
ate the dielectric response for anomalous diffusion. More-
over, these characteristic times yield a simple analytical
equation for the complex dielectric susceptibility tensor de-
scribing the anomalous relaxation of the system. The exact
solution of the problem reduces to the solution of the infinite
hierarchies of differential-recurrence equations for the corre-
sponding relaxation functions. The longitudinal and trans-
verse components of the susceptibility tensor may be calcu-
lated exactly from the Laplace transform of these relaxation
functions using linear response theory.

II. FRACTIONAL ROTATION DIFFUSION
IN AN UNIFORM DC EXTERNAL FIELD

Let us suppose that the uniform dc fieldE0 is directed
along theZ axis of the laboratory coordinate system and a
small probing fieldE1 having been applied to the assembly
of dipoles in the distant pastst=−`d so that equilibrium con-
ditions are fulfilled at timet=0, is switched off att=0. In
addition, it is supposed that the fieldE1 is weak (i.e., mE1
!kT, which is the linear response condition;m is the perma-
nent dipole moment of a molecule,k is the Boltzmann con-
stant, andT is the temperature). Here, the underlying frac-
tional rotational diffusion equation for the evolution of the
probability density functionWsq ,w ,td of dipole moment ori-
entations in configuration space(q and w are the polar and
azimuthal angles, respectively) is [2,7]

]

] t
W= t1−s

0Dt
1−sLFPW, s1d

whereLFP is the Fokker-Planck operator for normal nonin-
ertial rotational diffusion defined by
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1

2t
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]
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+
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] w
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t=z /2kT is the characteristic(Debye) relaxation time for the
normal diffusion,z is the drag coefficient, andV is the ori-
entational potential energy of the particle in the field. For the
longitudinal and transverse responses, one has

Vsq,td = − mE0 cosq − mE1std cosq s3d

and

Vsq,w,td = − mE0 cosq − mE1std cosw sinq, s4d

respectively. The operator0Dt
1−s;s] /]td0Dt

−s in Eq. (1) is
given in terms of the convolution(the Riemann-Liouville
fractional integral definition) [4]

0Dt
−sWsq,w,td =

1

GssdE0

t Wsq,w,t8ddt8

st − t8d1−s ,

whereGszd is the gamma function. Here, we consider sub-
diffusion phenomena only(0,s,1;s=1 corresponds to
the normal diffusion). Thus the fractional derivative is a type
of memory function with a slowly decaying power law ker-
nel in the time. Such behavior arises from random torques
with an anomalous waiting time distribution, that is, from a
fractal time random walk witht as the intertrapping time[4].
The physical meaning of the parameters is the order of the
fractional derivative in the fractional differential equation de-
scribing the continuum limit of a random walk with a chaotic
set of waiting times(often known as a fractal time random
walk) [18]. However, a more physically useful definition of
s is as the fractal dimension of the set of waiting times
which is the scaling of the waiting time segments in the
random walk with magnification. Thuss measures the sta-
tistical self-similarity(or how the whole looks similar to its
parts) of the waiting time segments[18,19].

The formal solutions of Eq.(1) are obtained from the
Sturm-Liouville representation[3,4,19]

Wsq,w,td = o
p=0

`

Fpsq,wdFpstd. s5d

Here, according to Eq.(1), the decay modesFpstd obey the
equation

d

dt
Fpstd = − lp,s

g
0Dt

1−sFpstd, s6d

where the eigenvalueslp,s are expressed in terms of the
eigenvalueslp

g of the Fokker-Planck operatorLFP for the
normal diffusion, viz.,

LFPFpsq,wd = − lp
gFpsq,wd,

so that[2–4,19]

lp,s
g = lp

gt1−s. s7d

The solution of Eq.(6) is given by[3,4]

Fpstd = Ess− lp,s
g tsd,

whereEsszd is the Mittag-Leffler function defined as

Esszd = o
n=0

`
zn

Gs1 + snd
.

Equation(7) exemplifies how the eigenvalues of the normal
distribution process are altered, in this case reduced, by the
nonlocal character of the anomalous diffusion process. The
eigenvalues of that process are related to their Brownian
counterparts by the prefactort1−s.
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III. DIELECTRIC RESPONSE FUNCTIONS

According to linear response theory[2], the longitudinal
and transverse components of the complex dielectric suscep-
tibility agsvd=ag8svd− iag9svdsg= i , ' d are defined as

agsvd
ag8s0d

= 1 − ivE
0

`

e−ivtCgstddt, s8d

where

Cistd =
kcosqlstd − kcosql0

kcosqls0d − kcosql0
s9d

and

C'std =
kcosw sinqlstd
kcosw sinqls0d

s10d

are the normalized relaxation functions,

ai8s0d =
m2N0

kT
s1 + j−2 − coth2jd

and

a'8 s0d =
m2N0

kTj
scothj − 1/jd

are the components of the static susceptibility tensor,j
=mE0/ skTd is the dimensionless field parameter,N0 is the
concentration of dipoles,k¯lstd denotes the statistical aver-
ages over the assembly of particles in the presence of a small
probing ac field, andk¯l0 means the equilibrium statistical
averages.

The Sturm-Liouville representation(5) is a formal solu-
tion as a knowledge of all eigenfunctionsFpsq ,wd and cor-
responding eigenvalueslp

g is required. However, this repre-
sentation is very useful as it allows one readily to obtain a
solution for the correlation functionsCgstd. According to
Eqs.(5)–(9),

Cgstd = op
Esf− lp

gtst/tdsg s11d

(whereopcp
g=1) so that

agsvd
ag8s0d

= op

cp
g

1 + sivtds/stlp
gd

s12d

because the Laplace transform of the Mittag-Leffler function
is

E
0

`

e−stEsf− lptst/tdsgdt =
1

s+ lpstsd1−s .

In the low sv→0d and highsv→`d frequency limits, the
susceptibility tensor components may readily be evaluated.
We have from Eq.(12)

agsvd
ag8s0d

< 1 −
tint

g

t
sivtds + ¯ s13d

for v→0, and

agsvd
ag8s0d

,
t

sivtdstef
g + ¯ s14d

for v→`. Here the integral relaxation timetint (the area
under the relaxation function) and the effective relaxation
time tef

g (which gives precise information on the initial decay
of the relaxation function in the time domain) for normal
diffusion ss=1d are defined as[2]

tint
g = op

cp
g/lp

g s15d

and

tef
g = 1/op

cp
glp

g. s16d

In general, it is difficult to evaluatetint
g andtef

g from Eqs.(15)
and(16) [just asagsvd from Eq.(12)], as a knowledge of all
the eigenvalueslk

g and corresponding amplitudesck
g is re-

quired. However,tint
g and tef

g can be evaluated from their
equivalent definitions[7]

tint
g =E

0

`

Cgstddt s17d

and

tef
g = − 1/Ċgs0d. s18d

We remark that the characteristic timestint
g andtef

g , Eqs.(17)
and(18), do not exist in anomalous diffusionss,1d. This is
obvious from the properties of the Mittag-Leffler function,
which has initially st!td a stretched exponential(Kohl-

rausch) form [3,4] Ess−tsd,e−ts/Gs1+sd and long time inverse
power law behaviorEss−tsd, t−s /Gs1−sd.

The relaxation timestint
g andtef

g were obtained in the con-
text of the normal rotational diffusion model in Refs.
[2,12,17] and are given by(in our notation)

tint
i =

tj

s1 + j−2 − coth2jdsinhj
E

−1

1 ejz

1 − z2fz− cothj + e−js1+zd

3s1 + cothjdg2dz, s19d

tef
i

t
=

j

Lsjd
− jLsjd − 2, s20d

for the longitudinal response and

tint
' =

t

jI3/2sjdon=1

`

s− 1dn+1s2n + 1dIn+1/2sjd
nsn + 1d USp

k=1

n

S̃k
's0dDU

s=1

,

s21d

tef
' = 2t

Lsjd
j − Lsjd

, s22d

for the transverse response, whereLsjd=cothj−1/j is

known as the Langevin function and theS̃k
's0dus=1 is defined

in the Appendix, Eq.(A10). The behavior of the relaxation
timestint

g andtef
g is very similar: they are very close to each

other and decrease with increasingj; see Fig. 1.
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According to Eq.(12), the infinite number of relaxation
modes(corresponding to the eigenvalueslk

g) gives a contri-
bution to the spectraagsvd. However, as we shall see, these
near degenerate individual modes are indistinguishable in the
frequency spectrum ofagsvd appearing merely as a single
band. Thus noting that

tint
g > tef

g , s23d

for all values ofj (see Fig. 1), the spectrum ofagsvd may be
approximated by the Cole-Cole equation

agsvd
ag8s0d

<
1

1 + siv/vc
gds

, s24d

where

vc
g = t−1st/tef

g d1/s s25d

is the characteristic frequency at which the loss spectrum
ag9svd attains its maximum. Noting the low temperature be-
havior of the effective relaxation times, viz.,tef

i ,t /j and
tef

',2t /j at j@1 [2,12], one can readily obtain from Eqs.
(20), (22), and(25) at j@1

vc
i , t−1j1/s andvc

' , t−1s2jd1/s. s26d

The frequenciesvc
i andvc

' as functions ofj ands are plot-
ted in Figs. 2 and 3. In the time domain, the single-mode
approximation Eq.(24) is equivalent to assuming that the
relaxation functionCgstd as determined by the exact Eq.(11)
(which in general comprises aninfinite numberof Mittag-
Leffler functions) may be approximated byone Mittag-
Leffler function only, viz.

Cgstd < EsF−
t

tef
g S t

t
DsG . s27d

Due to the condition, Eq.(23), the single mode approxi-
mation, Eq.(24), correctly predictsagsvd both at low sv
→0d and highsv→`d frequencies; moreover,agsvd may be
determined in the entire frequency range as one shall pres-
ently see. In order to estimate the accuracy of the approxi-
mate Eq.(24), the longitudinal and transverse components of

the complex susceptibility are evaluated exactly in the Ap-
pendix by converting the problem of solving the fractional
diffusion Eq.(1) with V given by Eq.(3) into the calculation
of successive convergents of a differential-recurrence rela-
tion just as normal diffusion[2,12].

IV. RESULTS AND DISCUSSION

The results of the calculation of the normalized
fm2N0/ skTd=1g loss spectraai9svd anda'9 svd from the exact
continued fraction solutions and the approximate Eqs.(24)
are shown in Figs. 4–7; here, the low- and high-frequency
asymptotes, Eqs.(13) and (14), are also presented. Appar-
ently asj increases, the spectra shift to higher frequencies in
accordance with Eq.(26); simultaneously, the half width of
the spectra increases with decreasings. Furthermore, the
agreement between the exact continued fraction calculations
and the approximate Eq.(24) is good[the maximum relative
deviation between the corresponding curves does not exceed
a few (3–5) percent]. Similar (or even better) agreement ex-
ists for all values of j. The accuracy of the single mode
approximation is due to the fact that forE1=0, the potentials
(3) and (4) are single-well potentials so that the long-lived
mode due to overbarrier relaxation(as in multiwell potentials
with two or more metastable states) [19] does not exists.

FIG. 1. Integral(tint
g : solid lines) and effective(tef

g : filled circles
and asterisks) relaxation times vsj for normal rotational diffusion
in a dc bias field. Equations(19)–(22) have been used in the
calculation.

FIG. 2. Frequencyvc
i as a function ofj ands.

FIG. 3. Frequencyvc
' as a function ofj ands.
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Thus the infinite number of high-frequency “intrawell”
modes(these near degenerate modes are indistinguishable
appearing merely as a single high-frequency band in the di-
electric loss spectrum) may be approximated effectively by a
single mode.

Thus one may conclude that Eq.(24) accurately describes
the behavior ofaisvd anda'svd for all frequencies of inter-
est and for all values of the field strengthsjd and anomalous
exponent ssd parameters, so that the generalized Debye
model can explain the anomalous relaxation of complex di-
polar systems where the anomalous exponents differs from
unity (corresponding to the classical Debye theory of dielec-
tric relaxation), i.e., the relaxation process is characterized by
a broad distribution of relaxation times. In particular, the
theory may be applied to dilute suspensions of fine magnetic
particles(ferrofluids) by a simple change of notation. Experi-
ments on the magnetization induced by a weak ac field su-
perimposed on a strong dc magnetic field may be realized in
practice in a ferrofluid as a large value ofj can be achieved
with a moderate constant magnetic field due to the large
value of the magnetic dipole momentm (104−105 Bohr mag-
netons) of single domain particles. As observed by Fanninet
al. [20,21], with increasingj, both the magnetic loss spectra
and the relaxation times for ferrofluids in a strong dc mag-

netic field decrease compared with those in the isotropic
case. The anomalous relaxation behavior naturally appears in
ferrofluids due to the broad distribution of particle volumen
(for fine particles, the magnetic moment and the Debye re-
laxation time strongly depend onn) [21]. The results ob-
tained may be regarded as a generalization of the solution for
the normal Brownian motion in a dc bias field[2,12] to frac-
tional dynamics(giving rise to anomalous diffusion). We re-
mark that the single-mode approximation works extremely
well both for normal diffusionss=1d as well. Furthermore,
the internal field effects have been neglected. Thus the ef-
fects of long-range torques due to the connection between
the average moments and the Maxwell fields are not taken
into account. Thus the theory developed here is relevant to
situations where dipole-dipole interactions have been elimi-
nated by means of suitable extrapolation of data to infinite
dilution. It should also be mentioned that just as in the con-
ventional Debye relaxationss=1d, the Cole-Cole-like Eq.
(24) may be derived from a number of very different models
(see, e.g., Refs.[7,22,23]). However, the advantage of using
an approach based on a kinetic equation(such as the frac-
tional Fokker-Plank equation) over all other approaches is
that one may explicitly include an external field and exactly
calculate its effect on the relaxation process. We also remark

FIG. 6. Dielectric loss spectraa'9 svd evaluated from the exact
continued fraction solution[Eqs. (8) and (A9): solid lines] for s
=0.5 and various values ofj and compared with those calculated
from the approximate Eq.(24) (stars). The low (dotted lines) and
high frequency(dashed lines) asymptotes are calculated from Eqs.
(13), (21), (14), and(22), respectively.

FIG. 7. The same as in Fig. 3 forj=5 and various values of
s.

FIG. 4. Dielectric loss spectraai9svd evaluated from the exact
continued fraction solution[Eqs. (8) and (A4): solid lines] for s
=0.5 and various values ofj, and compared with those calculated
from the approximate Eq.(24) (stars). The low (dotted lines) and
high frequency(dashed lines) asymptotes are calculated from Eqs.
(13), (14), (19), and(20), respectively.

FIG. 5. The same as in Fig. 1 forj=5 and various values of
s.
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in the context of dielectric relaxation that the area of appli-
cability of these results is restricted to the low frequency
range, as defined by the inequalityvtgø1sg= i , ' d, be-
cause the theory does not include the effects of molecular
inertia. A consistent treatment of inertial effects must be car-
ried out using the kinetic equation for the probability density
function in phase space[2].
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APPENDIX: EXACT CONTINUED FRACTION SOLUTION
FOR LONGITUDINAL AND TRANSVERSE

RESPONSES

The complex susceptibility componentsagsvd can be
evaluated from Eq.(12) by calculation eigenvalueslk

g for the
normal rotational diffusion[2]. However, agsvd may be
much more effectively calculated by using the continued
fraction approach(see Refs.[1,2] for details).

Let us first evaluate the longitudinal response(hereW is
independent ofw). By expanding the distribution function
Wsq ,td in a Fourier series,

Wsq,td = o
n=0

`

sn + 1/2dPnscosqdfnstd,

one has from Eq.(1) a differential-recurrence equation just
as for normal diffusion[2,12],

ḟ nstd = t−s
0Dt

1−sfqn
−fn−1std + qnfnstd + qn

+fn+1stdgsn ù 1d,

sA1d

where thePnszd are the Legendre polynomials[24], fnstd
=kPnlstd−kPnl0 are the relaxation functions, so thatCistd
= f1std / f1s0d, andqn,qn

−,qn
+ are defined as

qn = −
nsn + 1d

2
, qn

− =
jnsn + 1d
2s2n + 1d

, qn
+ = −

jnsn + 1d
2s2n + 1d

.

Applying the integration theorem of the one-sided Fourier
transformation generalized to fractional calculus[3], we have
from Eq. (A1)

ivt f̃ nsivd − fns0d = sivtd1−sfqn
− f̃ n−1sivd + qnf̃nsivd

+ qn
+ f̃ n+1sivdg, sA2d

where f̃sivd denotes one-sided Fourier transform, viz.,

f̃sivd =E
0

`

e−ivt fstddt. sA3d

The three-term recurrence Eq.(A2) can be solved exactly for

the Fourier-Laplace transformf̃1sivd in terms of ordinary
continued fractions to yield

C̃isivd =
f̃1sivd
f1s0d

=
2tsivtds−1

jf1s0d o
n=1

`

s− 1dn+1fns0d
2n + 1

nsn + 1dpk=1

n

S̃k
i sivd,

sA4d

where the continued fractionSn
i ssd is defined by the recur-

rence equation

Sn
i sivd = qn

−fsivtds − qn − qn
+Sn+1

i sivdg−1

=
j

2n + 1
F1 +

2sivtds

nsn + 1d
+

j

2n + 1
S̃n+1

i sivdG−1

.

The initial valuesfns0d are evaluated just as normal diffusion
[2,12],

fns0d = j1fkP1Pnl0 − kP1l0kPnl0g

= j1F n + 1

2n + 1
kPn+1l0 +

n

2n + 1
kPn−1l0 − kP1l0kPnl0G ,

sA5d

where

kPnl0 =
In+1/2sjd
I1/2sjd

, sA6d

j1=mE1/ skTd andIpszd is the modified Bessel function of the
first kind [24]. Here we have used the relations2n+1dP1Pn

=sn+1dPn+1+nPn−1 [24]. In particular, one has

f1s0d = j1F2

3

I5/2sjd
I1/2sjd

+
1

3
−

I3/2
2 sjd

I1/2
2 sjdG = j1F1 +

1

j2 − coth2jG .

The appropriate differential-recurrence equation for the
transverse relaxation functions

gnstd = kcoswPn
1scosqdlstd sA7d

(Pn
mszd is the associate Legendre function[24]) so that

C'std=g1std /g1s0d, can be obtained from Eq.(1) with V
given by Eq.(4) just as for normal diffusion[2,12],

d

dt
gnstd = t−s

0Dt
1−sfqn

−gn−1std + qngnstd + qn
+gn+1stdg sn ù 1d,

sA8d

whereqn,qn
−,qn

+ are defined as

qn = −
nsn + 1d

2
, qn

− =
jsn + 1d2

2s2n + 1d
, qn

+ = −
jn2

2s2n + 1d
.
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Just as the longitudinal response, Eq.(A8) can be solved
exactly for the Fourier-Laplace transformg̃1sivd in terms of
ordinary continued fractions to yield

C̃'sivd =
g̃1sivd
g1s0d

=
2tsivtds−1

jg1s0d o
n=1

`

s− 1dn+1 2n + 1

n2sn + 1d2gns0dp
k=1

n

Sk
'sivd,

sA9d

where the continued fractionSn
i ssd is defined by the follow-

ing recurrence equation:

Sn
'sivd =

qn
−

sivtds − qn − qn
+Sn+1

' sivd

=
jsn + 1d

ns2n + 1dF 2sivtds

nsn + 1d
+ 1

+
jn

sn + 1ds2n + 1d
S̃n+1

' sivdG−1

sA10d

and the initial valuesgns0d are given by

gns0d = j1
nsn + 1d
2s2n + 1d

fkPn−1l0 − kPn+1l0g = j1
nsn + 1d

2j

In+1/2sjd
I1/2sjd

.

Equations(A4) and(A9) are the exact solutions of the prob-
lem. They allow one to calculate the longitudinal and trans-
verse components of the complex susceptibility from Eqs.
(8)–(10).
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